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Abstract 

The joint probability distribution of ten pairs of 
isomorphous structure factors has been derived. Their 
indices correspond to the reflexions contained in the 
second phasing shell of the triplet invariant, as 
described by the theory of representations [Giacovazzo 
(1977). Acta Cryst. A33, 934-944; Giacovazzo (1980). 
Acta Cryst. A36, 362-373]. The conclusive formula 
allows the estimation of triplet invariants via a second 
representation formula, called the P10 formula, which is 
more accurate than the traditional formula of Giacov- 
azzo, Cascarano & Zheng [Acta Cryst. (1988), A44, 
45-51]. The procedure is also able to take into 
consideration the prior information on the heavy-atom 
structure, when available. 

1. Symbols and notation 

The notation is that used in the papers by Giacovazzo & 
Siliqi (1996a,b). 

2. Introduction 

The integration of isomorphous replacement techniques 
with direct methods was initiated by Hauptman (1982). 
The main goals of the Hauptman paper are: 

(a) The joint probability distribution 

P(</xn, ~k ,  Rh, Sh) (1) 

was found, where 

N 
1/2 

E h = R h exp(i~Xn) -- (1/of20 ) Efj exp(2zrihrj), 
j=l 

N 
Gh = Sh exp(iSh) = ( l / a ~  2) ~-'~ gi exp(2Jrihrj) 

j=l 

are the normalized structure factors of the protein and of 
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the derivative, respectively, and 

N 
Olmn = Efjmg~j. 

j=l 

From (1), the conditional distribution 

P(q~h -- ~hlRh, Sh) (2) 

was derived; 
(b) The joint probability distribution function 

P(q~hl, q~hz, l~n3 ' ~/hl' ~h2' ]//h3 ' Rh,' Rh2' Rh3' Sh,' Sh2' Sh3 ) 
(3) 

was obtained, where hl + h2 + h3 = 0. 
The Hauptman approach was revisited by Giacov- 

azzo, Cascarano & Zheng (1988). The main goals may 
be described as: 

(a) The joint probability distributions (2) and (3) were 
obtained by considering the atomic positions as the 
primitive random variables. In the Hauptman approach, 
the primitive random variable was the ordered triple 
( h i ,  h 2, h3) of the reciprocal vectors, which is assumed 
to be uniformly distributed over the subset of vectors 
satisfying the condition h 1 + h 2 + h 3 = 0. 

(b) A formula for the triplet invariant estimate was 
derived, which holds when the derivative is obtained by 
addition of heavy atoms: 

P(qblRhl . . . . .  Sh3 ) - -  [2:rrl0A] -1 exp(A cos ~), (4) 

where 

*=4~, +4~2 +~3, 
A -- 2[cr3#r3/2]pRhRh2Rh3 -4- 2[O'3/Cr3/2IHAh~ Ah2 Ah3, 

(5) 

or,, = )--~.j Zj", Zj being the atomic number of the jth atom. 
The suffixes p, H and d refer to protein and heavy-atom 
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and derivative structure, respectively. Furthermore, 

= (le' l- iE' i), 

E'p : Fp/.U~ 2, E' d = Fd/.U~ 2. 

E'p and E' d are the structure factors of the protein and of 
the derivative, respectively, normalized with respect to 
the heavy-atom structure. 

Formula (4) succeeded when applied to experimental 
diffraction data and constitutes the main tool of a 
procedure aiming at phasing protein reflexions in the 
absence of information on the heavy-atom positions 
(Giacovazzo, Siliqi & Ralph, 1994; Giacovazzo, Siliqi 
& Spagna, 1994; Giacovazzo, Siliqi & Zanotti, 1995; 
Giacovazzo & Gortzalez Platas, 1995; Giacovazzo, 
Siliqi, Gortzalez Platas, Hecht, Zanotti & York, 1996). 
A recent application of the method of joint probability 
distribution functions to evaluate quartet invariants from 
isomorphous data (Giacovazzo & Siliqi, 1996a,b) 
opened new perspectives. Indeed: 

(a) The Gram-Charlier expansion of the character- 
istic function was used (see Giacovazzo, 1980a) in the 
calculations. Such an approach allowed the awful 
calculations necessary to evaluate quartet invariants 
v i a  the exponential form of the characteristic function 
(as used by Hauptman for the triplet estimation). The 
calculations were still quite heavy but the conclusive 
formulas are simple to use. Such a result suggests that 
the derivation of even more complicated joint prob- 
ability distributions could be performed v i a  the same 
approach. 

(b) The efficiency of the formula estimating quartet 
invariants indicates that the cross magnitudes of the 
quartet provide useful information. Why then not 
integrate such a mathematical approach with the theory 
of representations of structure factors (Giacovazzo, 
1977, 1980a; see Hauptman, 1975, for a related 
principle). According to such a formulation, for each 
invariant or seminvariant ~ ,  a sequence of sets of 
reflexions (phasing shells) may be identified, each shell 
contained in the succeeding one, having the property 
that • may be estimated v i a  the magnitudes constituting 
any shell. The sequence of the shells reflects the order 
of their expected efficiency (in the statistical sense) for 
the estimation of the ~.  

In the absence of isomorphous data, the second 
representation of • is the collection of special quintets 

{q/} = {q~h, + q~h2 + 4h3 + q~k - 4h,}, (6) 

where k is a free vector that can span over all the 
reciprocal space. Since qs - ~ for any k, any estimate 
of tp simultaneously provides an estimate of ~.  By 
making explicit use of the symmetry, one may write (6) 
a s  

{I/./} --- {~hl -~- (J)h 2 -.~-¢~h3 ' ~ - ~ i -  ~,Ri}' i =  1 . . . .  m ,  

(7) 

where k varies over the symmetry-independent reflex- 
ions and the vectors kR i are the m symmetry equivalents 
of a given k. The second representation estimate of the 
triplet • benefits by the cross magnitudes of any quintet 
in (7). From a probabilistic point of view, the best 
estimates of • can be obtained v i a  the study of the joint 
probability distribution function 

P(Eh,, Eh 2 , Eh 3 , Ehl+k, Ehl-k, fh2+k, Eh2-k, Eh3+k, Eh3-k). 
Such work has been done by Cascarano, Giacovazzo, 
Camalli, Spagna, Burla, Nunzi & Polidori (1984). The 
conclusive formula was 

P(¢') _~ [2zrl0(G)] -1 exp(Gcos ~), (8) 

where 

G = C(1 + Q), (9) 

C - -  2[EhEh2Eh3I/N I/2 

Q = ~-'~{Tk/[1 -F (EhlEh2~'h3 -~- Bk)]} 
k 

r k :  ~'~ rk,  i 
i=l 

B k = ~ - ~ B k ,  i 

Tk, i = 

Bk,  i - -  

i=I 

N- t e k [Ehl +kRi (Eh2_kR i "]- Eh3_idli) 

+ Eh2+kRi(Eht-ldl i -~- Eh3_kRi) 

"3 t- Eh3..bkRi(Ehl_kR i "3 t- Eh2_kRi)], 

(2N)-leh~ [ek(eh~+kR ~ -F eh~_kR ~) 

Eh2 +k.Ri •h3 -kR i 

'Eh2 [Ek('Eh2+kR i + 

"3 I- EhI_FkRiEh3_kR i "3 I- 

"~ Eh3 [Ek(Eh3-l-kRi "71- 

-~- Ehi+kRiEh2_kR / -'~ 

Eh 2 -kR i Eh 3 +kR i ] 

Eh 2-kR i) 

Ehl -kRi Eh3 +kRi ] 

Eh 3 -kR i ) 

Eh 1 -kR i Eh2 +kRi]" 

(10) 

¢J5 - -  ~i ,h I + ~j ,h 2 + ~s,h 3 ( l  1) 

is a triplet provided h~ + h  2 + h  3 = 0. No limiting 
conditions hold for the indices i, j ,  s, which can 
arbitrarily vary between 1 and r. 

If no k is used, (8) reduces to the Cochran (1955) 
formula. In general, G may be positive or negative; 
when G < 0, the most probable value of • is zr. 

The combination of the representation theory with 
isomorphous replacement techniques could allow better 
estimates of the invariants. In particular, more accurate 
triplet estimates could be obtained if the concept of 
representation of a triplet is extended to isomorphous 
data. Such an extension has been accomplished by 
Giacovazzo (1984)" the main results are quoted below. 

Let us suppose that r isomorphous data sets are 
available. Then, 
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The first representation of q~ is the collection of the 
triplets (11) obtained when i, j ,  s freely vary between 1 
and r. For r -- 2, the above definition leads to the eight 
combinations 

¢hl + ¢h~ + ¢h,' 

Oh, + Ch~ + Oh,, 

Ch, + Ch~ + ¢h~, 
Oh, + ¢:h~ + ¢:h~, 

¢:h, + ¢h~ + Ch,, 

~fhl -~- (~h2 "-{- ~fh3 , 

Ch, + ~h2 + ~h~" 

(12) 

The above algebraic definition has its counterpart in the 
probabilistic procedure leading to the joint probability 
distribution function (3), which explicitly involves in its 
expression all the eight triplets (12). The difficulty in 
deriving (3) arose from the necessity of calculating the 
mathematical interactions among the eight types of 
triplets. 

The second representation of • is the collection of 
special quintets 

I// = {¢i.hl "4- Cj,h 2 -qt- Cs.h 3 + Cp,k --  Cq,k}" ( 1 3 )  

Again, no limiting conditions hold for the indices i, j ,  s, 
p and q, which can arbitrarily vary between 1 and r. For 
r -  2, the second representation of c/, involves 32 
special quintets, four for each triplet in (12). For 
example, 

~h, + ~h~ + ~ 3  + Ck -- Ck, 

(~ll, "~- (~h 2 "~ ~h 3 4 - C k -  ~fk, 

~)h| -~- ¢/)h 2 "~ ~h 3 -~- ~fk -- ~k , 

~ ,  + 4'h~ + ¢h~ + ~k -- ~k, 

l~h I "4- ¢])h2 -'~ ~)h3 -~- Ck --  •k '  

lPh I -~- ¢/)h 2 "~- (/)h 3 "-~ l~k --  Ck '  

1/)"h, qt- (])h 2 "~- ¢~h 3 21- l ~ k - -  ~ k  

etc .  The second representation estimate of the triplet 
phase • benefits by the prior knowledge of the cross 
magnitudes of the quintets (13). Accordingly, we 
have to study the joint probability distribution 
function 

P(Eh,, Eh 2, gh 3 , Ehl+k, Ehl-k, Eh2+k, Eh2-k, Eh3+k, Eh3-k, 

G h , ,  Gh2 ' Gh3 . . . . .  Gh3_k) ,  ( 1 4 )  

which involves ten isomorphous pairs of structure 
factors. Since k is a free vector that can span over all 
the reciprocal space, one could derive an overall 
distribution by combining the distributions (14) 
obtained for single values of k. 

3. The characteristic function of the joint 
probability distribution function of ten isomorphous 

pairs of structure factors 

Let 

C ( v l  . . . . .  rio, #1 . . . . .  /Zlo, Pl . . . . .  Plo, Y1 . . . . .  Vlo) 

be the characteristic function of the distribution 

Plo - P(¢1 . . . . .  ¢1o, ~1 . . . . .  ~klo, RI . . . . .  Rio, 

S1 . . . . .  $10), 

where 

El -- R1 exp(i¢l) -- Rh~ exp(iChl) 

62 = R2 exp(i¢2) -- Rh 2 exp(i4)h2) 

E 3 = R 3 exp(i¢3) = Rh3 exp(iCh 3) 

E4 = R4 exp(i¢4) -- Rh4 exp(iCk) 

E5 = Rs  exp(i¢5) = Rh, +k exp(iChl +k) 

E6 = R6 exp(i¢6) = Rh,-k exp(iCh~_k) 

E7 = R7 exp(iC7) = Rh2+k exp(iCh2+k) 

E8 = R8 exp(i¢8) = Rh2-k exp(iCh2-k) 

E9 = R9 e x p ( i ¢ 9 )  - -  Rh3+k exp(iCh3+k) 

Elo = Rio exp(i¢10) = Rh3_ k exp(iCh3-k) 

G 1 = S l exp(hPl) = Sh, exp(hPh~) 

G 2 = S 2 exp(iC2) = Sh2 exp(iCh 2) 

G10 = $10 exp(i¢10) -- Sh3-k exp(i~h3-k)" 

1)i, # i ,  Pi, Yi for i -- 1 . . . . .  10 are the carrying variables 
associated with ¢i, ¢i, Ri, Si for i = 1 . . . . .  10, respec- 
tively, and h~ + h z + h 3 = 0. The characteristic func- 
tion, expanded in a Gram-Charl ier  series, may be 
written as 

oo cx~ 27r 2Jr 20 
Plo = f . . -  f f - . .  f I-I{(1/2:rr2)RiSiPiYi 

0 0 0 0 i=1 

X e x p [ - -  1 (p/2 -k- Y ~ i ) -  i21/2pigicos(¢i- vi) 

- i 21 /2y iS  i cos(¢i - # i )  - °tiPiYi c o s ( v / -  #i)]} 

X {1 --  2-1/2i[Y1,2,3PlP2P3 COS(V 1 + I) 2 -a t- 1)3) "at- 

+ YI,4,SPlP4P5 COS(1)l + 1)4 - 1)5) + 

+ Y1,4,6Pl/94/96 COS(1)l - 1)4 --  136) + 

+ YI,7,1oPlP7PloCOS(1)I + 1)7 + 1)10) + 

+ }]I,8.9PlD8P9 COS(UI + 1)8 -~- 1)9) "at- 

+ Y2,4,7P2P4P7 COS(1)2 + 1)4 --  1)7) + 

+ Y2,4,8D2P4D8 c0s(1)2 - 1)4 --  1)8) "~- 

+ Yz,5,1oPzPsPlo cos(1)2 + 1)5 + 1)1o) + 
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+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

× 

+ 

× 

+ 

× 

+ 

X 

+ 

X 

+ 

~2.6,9P2P6P9 COS(!)2 "F 116 -1- 119) "F O 

Y3,4,9P3P4P9 COS(U3 + 114 -- I)9) "3t- O 

Y3,4.10P3P4P10 COS(V3 -- 114 -- 11,0) + 

Y3.5.8P3P5P8 COS(113 + 115 + 118) + O 

)/3.6,7P3P6P7 COS(1)3 -]- !)6 + 1)7) + ~ ]  

1 [,,2 P~I '~2P 2 COS2(111 + 112 "~- 113) "3t- O ] t r l .2 .3  ,t"2 3 

~4,~p~IAp~ co~¢1), + 1)4 - 11~) + © 
2 2 2  ~l,4,6P'P4P6 COS2(1)1 -- 1)4 !)6) + 
2 2 2  2 ~I.7.10PlP7P'o cOS (111 -3t- 117 -+- 1110) "31"- O 

2 2 2  
~l .8 .9P 'PsP9 COS2(1)1 + !)8 + !)9) + O 

/~ 4 7p~p,~p~ c0s2(1)~ + 114 - 117) + © 

Y~2,4,sP~P]P~ cos2(v2 -- 114 -- I)8) "-t'- 0 

~.~.xop~,o~p~o cos2(11~ + 11~ + 11,o) + 0 

~2,6,9p2p2p 2 COS2(V2 + !) 6 "-F i)9) "~ O 

~,4,9p~pS,~ cos~(~3 + 114 - 119) + © 
2 2 2  2 

~3.4.10P3P4P10 cOS (i)3 -- I)4 1110) "3t- O 

~,5,8p2p2p 2 C0S2(1)3 "~- i) 5 "]- i)8) "l- 0 

2 2 2  ~3.6.7P3P6P7 COS2(113 "~" 116 + 117) -~- ~ ]  

Y1,2.s.7PlP2PsP7 COS(111 -- I)2 -- 1)5 + I)7) 

i 2-3/2 [Yi.4, 5 Y2.4.8 Y3.5,8 Pl P2P3P~P~ P~ 
COS(111 + 112 + 113) + O 

}I,.4.6'}t2.4, 7 Y3.6. 7 Pl IO2P31D21D2 p 2 

COS(11, "F I) 2 "F !) 3) + O 

Fl.v.loY2,4.vY3.4,1oP,P2P3P~P~P21o 
C0S(111 -~ P2 + 113) + 0 

2 2 2  
~1,8,9 Y2,4,8 Y3,4,9Pl P2P3 P4PsP9 

COS(11, + 112 "F 133) "F O 

YL4,5 Y2,5, lO ~'3,4, loPl P2 P3 P2 P2 p20 
COS(111 "F 132 "F !)3) "F O 

2 2 2  
Y1,4,6~2,6,9 ~3,4.9Pl P2P3P4P6P9 

X COS(111 "F 112 "F 113) + O ]  

+ . . . } ,  (15) 

N 
Yl.2.5.7 = ( ' ~ ,  "~2"~5'~7) - ' / 2  E f j(hl)f j(h2)fj(hl  + k )  

j=l  

× fAh2 + k) 

N 2 • and Ei = ~--~f--,fj is calculated for the ith reflexion. 
The number of terms in the distribution (15) is 

extremely large• We have quoted [as in Giacovazzo & 
Siliqi (1996a,b) for the quartet distribution] only those 
that significantly contribute to the estimation of q~. We 
note: 

(a) We have used a curved arrow to represent the 
'cyclic terms' of a prototype term [only the prototypes 
are quoted in (15)]• For example, the complete set of  
cyclic terms for Y1,4,sPlP4P5COS(111 +114--1)5) (the 
prototype included) are the eight terms 

YI.4.5PiP4P5 COS(Vl + I)4 -- I)5)' YI,4,~iPlP4Y5 COS(1)l "F 1)4 -- ]/£5), 

Vl.a.5Pl )/4,05 COS(1)I +// '4  -- 1)5), YI.i~.~Pl Y4F5 c°s(vl + /z4  - /Zs ) ,  

)/i.4.5YIP4P5 COS(/£1 -~- 1)4 -- 1)5), Yi.4.5Yl )/4,05 COS(/~I -~ #4 -- 1)5), 

Yi.4.SYlP4Y5 COS($£1 "~ I)4 -- #5) '  Yi,4,~Yi Y4Y5 COS(I'Ll "q- /1"4 -- #5), 

where 

N 
Y,,4,5 = ( Z 1 Z 4 Z 5 )  -112 E fj(hl)fj(k)gj01, + k )  

j= ,  

N 
VLk5 = (El  E~ Es) -1/2 ~ fj(hl)gj(k)fj(h 1 + k) 

j=l  

• • 

t N • Z i -- ~ ) _ ,  ~ Is calculated for the ith reflexion. In all, 
the distribution involves 13 x 8 - 104 different triplet 
terms and we quote in (15) only 13 prototypes. 

(b) the cyclic terms of  Y,.2.5,7Pl P2P5P7 x 
COS(111 - -  112 - -  115 "F 117), t h e  prototype included, a r e  t h e  

16 terms 

Y,.2.5.7#lP2PsP7 COS(111 -- !12 -- !)5 @ 137) 

Y,.2.5.7P, P2PsY7 cos(111 -- 112 -- i)5 -31- # 7 )  

Y,.2.5fiPlP2Y5Y7 c°s(111 - 112 - #5  + # 7 )  

~i,2.5.TY, Y2YSY7 COS(/£, -- #2  -- #5  + #7 ) ,  

where 

where 

N 
Y1,4.5 = (E,  Z4Es)  -~/2 ~ fj(hl)fi(k)fj(hl + k), 

j=l  
N 

Y,,4,6 -'- ('~WI "~4 "~V'6)-1/2 E f j (hl)f j (k)f j (h ,  -- k ) ,  
j=l  

N 
VL2.5,~ -- (El E2Es27~) -'/2 ~ fj(hl)fj(h2)fj(hl + k) 

j=l  

× gj(h 2 + k) 

etc. There are 42 prototypes, for a total of 42 x 16 = 
672 quartet-type terms. 

(c) There are 29 cyclic terms of the prototype 
)/1,4,5Y2,4,8)/3,5,8p, p2P3p2f~5~8 COS(11, -3 L i) 2 -3 t- 113), proto- 
type included. In all, 29 x 6 ---- 3072 terms of  order 
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N -3/2 a re  contained in the distribution, giving contribu- 
tions of order N -3/2 for the estimation of ~.  

There are too many terms in (15) to register the Structure 
contribution of each single term. We will only give here code Reference 
the final results. The reader interested in the mathe- APP (a) 
matical details is referred to the recent papers by CARP (b) 
Giacovazzo & Siliqi (1996a,b). BPO (c) 

E2 (d) 

4. The triplet phase probability formula 

The final expression of the conditional probability 
distribution function Pm($I{R, S}) has a simpler form 
when expressed in terms of pseudo-normalized (with 
respect to the heavy-atom structure) structure factors R~ 
and S~, where 

1/2 1/2 
R i = ~/[0"2] H /[0"2] p , 

t, tr ~l/2.r  ~1/2 
Si --- 3i[tr21H /[tr21d • 

We obtain 
! ! 

Plo -- P(~IR'I, R2,1~3 . . . . .  $1o) 
(16) 

= [2a'10(A)] -1 exp{A cos ~}, 

where 

A = 2[tr3/ty32/2]pRlR2R3 + 2( ,4 '  1A'2At3/N 1/2) 
(17) 

x {1 -Jr Tk/[1 + ((L~)(L'~>(L~)+ Bk)]}, 

NH = [o3/~/2b 

is the equivalent number of heavy atoms in the unit cell, 

a ;  = s; i - 

D'~j = l~ ( 2gS~) / lo( 2gS~), 

Tk = E Tk,i, Bk = Bk,~. 
i=1 i=l 

I i is the modified Bessel function of order i. Further- 
more, 

rk, , = Nt~' (/_~4}[(/_~5)(L~8} + (/-Jg6)(L}7)+ (L}7)(L m} 

Bk,, = (2NH)-'[(/-~) (~)  (/-~3} + {/-~) (/-~4} (/-~5} 

+ (L2)(L6)(L 9} + (L~)(L4)(L 9) + (L~)(L4)(L~} 

(~} = (Sj '2 + R a - 2RSSjD'I/) - 1. 

We observe: 
(a) the distribution (16) is a Von Mises-type function: 

it is unimodal and the expected value of • is 0 or ~r 
according to whether A is positive or negative. 

Table 1. Code name, space group and crystallochemical 
data for the test structures 

Molecular 
Space group formula Z 

C2 ClgoNs3058Zn 4 
C2 CsI3NI31OI21Ca2 s 4 
P213 C2744N71201073 12 
F432 C117oN31oOa66S 7 96 

References: (a) Glover, Haneef, Pitts, Wood, Moss, Tickle & 
Blundell (1983); (b) Kretsinger & Nockolds (1973); (c) Hecht, 
Sobek, Haag, Pfeifer & Van Pee (1994); (at) Mattevi, Obmolova, 
Schulze, Kalk, Westphal, De Kok & Hol (1992). 

Table 2. Relevant parameters for diffraction data of the 
test structures 

Native Derivative 

Structure Res. Heavy [tr2]n/ Res. 
code (~,) NREFL atom [cr2] p (A) NREFL 

APP 0.99 17058 Hg 0.055 2.0 2086 
CARP 1.70 5056 Hg 0.044 2.0 4687 
BPO 2.35 23956 Au 0.028 2.78 15741 
E2 2.65 10391 Hg 0.021 3.0 9179 

(b) for proteins, the term 2[a3/tr~/2]pRlR2R3 is quite 
often negligible with respect to the second term in (17). 
It will be neglected in the following considerations. 

(c) the contribution from the second phasing shell can 
change the value of the expected phase. According to 
the first representation formula, • is expected to be zero 
if (,4'IA~A~) is positive and is expected to be rr if 
(A'IA~A~) is negative. In the second representation 
formula, the term C O R R  k = Tk/[1 + ((L~}(L2)(L' ~) + 
Bk)  ] may be considered a correction term that modulates 
the first representation estimate. If C O R R  k < - 1 ,  the 
second representation estimate is different by rr from the 
first representation estimate. 

(d) it is safe to assume B = 0 if B < 0, by analogy 
with the results obtained by Giacovazzo (1976, 1980b) 
for quartet estimates. 

(e) if some of the cross terms are unknown, then 
suitable marginal distributions should be calculated. 
The final result is the following: if the pair (R~, S~) is not 
among the measured data then A may be updated by 
omitting in (17) the terms including (L~}. 

( f)  for large values of the product (2R~Sj) (this 
occurs because R' and S' are pseudonormalized 
structure factors for which (R '2} and (S '2) are remark- 
ably larger than unity), the value of D' 1 attains unity. 
Then, 

"4~--A i = S ~ - R ~  and ( L ~ ) = , 4 2 - 1 .  

In practice, we will use several indices k in our 
probabilistic approach. The contribution coming from 
the various special quintets so obtained may be 
combined in a single formula, say (16) again, in 
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Table 3. E2: statistical calculations for triplet invariants (found among the 800 reflexions with the largest I A I) 
relative to formulas (4) and (16) 

Calculated error-free data for native and derivative structures are used. NR is the number of phase relationships having IAI [as defined by (5) and 
(18)] larger than ARG, % is the percentage (x  100) of phase relationships whose cosine sign is correctly estimated and (1'/~1) (o) is the average of 
the absolute values of the triplet phase ~ .  

(4) (16) (16) 
Positive estimated triplets Positive estimated triplets Negative estimated triplets 

ARG NR % (1¢~1) (o) NR % (1¢'1) (o) NR % (1¢~]) (o) 

0.2 25359 88 45 23823 90 43 581 57 100 
1.2 22279 89 44 15086 92 41 69 80 131 
3.2 12 I00 10 882 93 39 1 100 147 
4.4 0 - - 53 100 40 0 - - 

(4) (16) (16) 
Negative estimated triplets Positive estimatedtriplets Negative est ima~dtr iplets  

ARG NR % (1~1)(o) NR % (1~1)(o) NR % (1~1)(°) 

0.2 24641 88 135 619 61 79 23098 90 137 
1.2 18828 90 136 66 88 46 14134 92 139 
3.2 9 100 170 0 - - 743 92 142 
4.4 0 - - 0 - - 0 - - 

Table 4. BPO: statistical calculations for triplet invariants (found among the 800 reflexions with the largest I A I) 
relative to formulas (4) and (16) 

Calculated error-free data for native and derivative structures are used. See Table 3 for additional details on the symbols. 

(4) (16) (16) 
Positive estimated triplets Positive estimated triplets Negative estimated triplets 

ARG NR % (1¢~[) (°) NR % (1¢~1) (o) NR % (I¢'l) (o) 

0.2 25187 91 42 20858 93 40 3208 19 55 
1.2 25187 91 42 16667 93 39 1431 26 62 
3.2 1062 98 31 6260 94 38 242 42 83 
4.4 0 - - 2450 94 38 78 53 96 
9.0 0 - - 15 100 16 1 100 125 

(4) (16) (16) 
Negative estimated triplets Positive estimated triplets Negative estimated triplets 

ARG NR % (1¢~1) (o) NR % (1¢~1) (o) NR % (1¢~1) (o) 

0.2 24813 91 138 3122 19 125 20565 93 140 
1.2 24813 91 138 1352 25 117 16329 93 140 
3.2 905 98 148 209 43 92 5979 94 142 
4.4 0 - - 66 64 69 2318 94 143 
9.0 0 - - 2 100 4 14 100 152 

which (17) is replaced by 

A = 2[o'3/~73/21pglg2R 3 + 2 ( A '  1A 'zA '31Nff  2) 

× ( 1 + ~-~ CORRk} " k 
(18) 

5. Check of the probabilistic formula (16) by 
calculated diffraction data 

We first apply (4) and (16) to calculated data in order to 
check their relative efficiency in the case of perfect 
isomorphism and in the absence of experimental errors 
in measurements. Structure factors are calculated from 
refined positional and vibrational parameters of the test 
structures quoted in Table 1. The relevant parameters 
for the experimental data of the test structures are 

shown in Table 2; calculated data will reflect the same 
parameters. 

For each test structure, the normalized structure 
factors up to derivative resolution are arranged in 
decreasing order of I z a I: the code number of the ith 
reflexion [CODE(i)] is just such an order number. 
Millions of triplets can be calculated among the 
reflexions: the estimate of each triplet via (16) requires 
the exploration of the reciprocal space via a ten-node 
figure, which sweeps out by letting k freely vary over 
the set of reciprocal vectors. It is clear, from the above 
observations, that the use of (16) may be very time 
consuming even for very fast computers. We therefore 
decided to check the relative efficiency of (4) and (16) 
by introducing two restrictions in the calculations: (a) 
triplets are only found among the reflexions with the 
smallest value of CODE (e.g. those with the largest 



C. G I A C O V A Z Z O ,  D. SILIQI ,  G. C A S C A R A N O ,  R. C A L I A N D R O  A N D  A. M E L I D O R O  259 

Table  5. E2: statistical calculations for triplet invariants (found among the 800 reflexions with the largest [,4 I) 
relative to formulas (4) and (19) 

Calculated error-free data for native and derivative structures are used. See Table 3 for additional details on the symbols. 

ARG 
0.2 
1.2 
3.2 
4.4 

(4) (19) (19) 
Positive estimated triplets Positive estimated triplets Negative estimated triplets 

NR % (l~l> (o) NR % (1431) (°) NR % (1~1) (°) 
25359 88 45 24004 90 43 675 62 105 
22279 89 44 15750 93 39 160 86 138 

12 100 10 532 100 26 16 100 166 
0 - - 20 100 20 6 100 164 

(4) (19) (19) 
Negative estimated triplets Positive estimated triplets Negative estima~d triplets 

ARG NR % (l~l) (o) NR % (1~1) (o) NR % (1~1) (o) 

0.2 24641 88 135 647 67 71 23255 90 137 
1.2 18828 90 136 153 86 44 14788 93 141 
3.2 9 100 170 14 86 32 425 99 153 
4.4 0 - - 4 75 49 16 100 161 

Table  6. BPO: statistical calculations for triplet invariants (found among the 800 reflexions with the largest 1,4 I) 
relative to formulas (4) and (19) 

Calculated error-free data for native and derivative structures are used. See Table 3 for additional details on the symbols. 

(4) (19) (19) 
Positive estimated triplets Positive estimated triplets Negative estimated triplets 

ARG NR % (1¢'1) (o) NR % (I,t'l) (°) NR % (1¢'1) (°) 
0.2 25187 91 42 24600 92 41 388 58 97 
1.2 25187 91 42 22018 93 39 137 78 115 
3.2 1062 98 31 3956 98 33 29 97 139 
4.4 0 - - 351 99 26 7 100 150 
9.0 0 - - 0 - - 0 - - 

(4) (19) (19) 
Negative estimated triplets Positive estimated triplets Negative estimated triplets 

ARG NR % (1~1) (o) NR % (1~1) (°) NR % (1~1) (°) 
0.2 24813 91 138 397 54 81 24204 92 139 
1.2 24813 91 138 154 70 63 21604 93 140 
3.2 905 98 148 29 100 27 3625 98 148 
4.4 0 - - 10 100 14 282 99 154 
9.0 0 - - 0 - - 0 - - 

value o f  I AI) ins tead o f  a m o n g  the full set o f  data. 
H o w e v e r ,  the n u m b e r  o f  tr iplets  i nvo lved  in the 
calculat ions  is statist ically significant;  (b) k var ies  
over  a ve ry  l imi ted  subset  o f  ref lexions,  the 20 
ref lexions wi th  codes  b e t w e e n  1 and 20. The  hope  is 
that  even  a small  n u m b e r  o f  special  quintets  can p rov ide  
useful  supp lemen ta ry  in fo rmat ion  for  the t r iplet  es t ima-  
t ion (in fact, NH is a small  number ) .  

W e  show in Tables  3 and 4 the results  o f  our  tests for  
E3 and BPO.  NR is the n u m b e r  o f  tr iplets  wi th  IAI [as 
def ined by  (5) or  (18)] larger  than A R G ,  % is the 
pe rcen tage  ( x l 0 0 )  o f  the phase  re la t ionships  whose  
cos ine  sign is cor rec t ly  de t e rmined ,  and (1~1) is the 
average  (in degrees )  o f  the absolute  values  o f  the tr iplet  
phases  ~ .  The  key  for  cor rec t  read ing  o f  the tables is: 
the tr iplets  e s t imated  posi t ive  by (4) are submi t ted  to 
(16), wh ich  splits t h e m  into pos i t ive  and nega t ive  

es t imated  tr iplets.  S imi lar ly ,  t r iplets  e s t imated  nega t ive  
by (4) are submi t ted  to (16),  w h i c h  splits t h e m  again  
into posi t ive  and nega t ive  es t imated  triplets.  W e  
observe :  

(a) the ef f ic iency o f  (16) for  E2 is sat isfactory:  a non-  
neg l ig ib le  n u m b e r  o f  tr iplets  w r o n g l y  es t imated  by (4) 
are r ecogn i zed  and cor rec t ly  eva lua ted  by (16); 

(b) (16) is less eff icient  for  BPO:  tr iplets  w r o n g l y  
es t ima ted  by (4) are cor rec t ly  e s t ima ted  by (16) on ly  for  
large values  o f  IAI. 

The  above  behav iou r  is not  unexpec ted .  In two recent  
papers  (Giacovazzo  & Siliqi,  1996a,b) ,  a theory  for the 
es t imat ion  o f  quar te t  invar iants  has been  desc r ibed ,  
explo i t ing  the p r io r  i n fo rma t ion  p r o v i d e d  by i somor-  
phous  data. In the conc lus ive  fo rmula ,  es t imat ing  the 
quar te t  phase  g iven  seven  pairs  o f  i somorphous  
ref lexions,  the cross  t e rms  inf luence the es t imates  via 
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Table 7. E2: statistical calculations for  triplet invariants ( found among the 855 reflexions with the largest [AI) 
relative to formulas (4) and (19) 

Observed data for native and derivative structures are used. See Table 3 for additional details on the symbols. 

(4) (19) (19) 
Positive estima~d triplets Positive estimated triples Negative estimated triplets 

ARG NR % (1¢1) (o) NR % (l~{) (o) NR % (1~1) (o) 

0.2 25058 72 65 19537 79 57 2967 62 104 
1.2 4281 81 54 8088 85 50 599 74 119 
3.2 0 - - 239 95 36 21 91 146 
4.4 0 - - 30 100 23 1 100 159 

(4) (19) (19) 
Negative estimated trip~ts Positive estimated triplets Negative e~imatedtrip~ts 

ARG NR % (1¢,1) (o) NR % (1¢'1) (o) NR % (1¢,1) (o) 

0.2 24942 71 114 2961 64 74 19234 78 122 
1.2 3234 81 126 531 75 62 7161 85 131 
3.2 0 - - 27 85 56 207 94 143 
4.4 0 - - 7 86 55 17 100 157 

Table 8. BPO: statistical calculations for  triplet invariants (found among the 1500 reflexions with the largest 1,41) 
relative to formulas (4) and (19) 

Observed data for native and derivative structures are used. See Table 3 for additional details on the symbols. 

(4) (19) (19) 
Positive estimated triplets Positive estimated triplets Negative estimated triplets 

ARG NR % (1¢'1) (o) NR % (1¢'1) (o) NR % (1¢'1) (o) 

0.2 25195 68 69 20107 72 65 2785 52 92 
1.2 8680 72 64 10145 77 59 676 58 100 
3.2 0 - - 531 84 50 30 40 98 
4.4 0 - - 70 90 44 2 50 116 

(4) (19) (19) 
Negative estimated triplets Positive estimated triplets Negative estimated triplets 

ARG NR % (l~l) (o) NR % (1~1) (o) NR % (1~1) (o) 

0.2 24805 68 110 2739 51 89 19688 71 115 
1.2 6919 72 115 581 58 82 9485 76 120 
3.2 0 - - 27 74 61 437 80 126 
4.4 0 - - 8 75 67 45 78 122 

the same functions (L~) occurr ing in (16). It was noted 
that a component  of  (L~), say (S/'2 + R/'2 - 2RiS~D'li ) , '  ' is 
nothing but the expected squared magnitude of  the 
normalized structure factor of the heavy-atom structure. 
The lack of  information on [E H [i (not direct ly available 
from the moduli  R~ and S~) brings an ambigui ty  into the 
probabilist ic approach that may be el iminated when 
[EH[ i is known. The reader is referred to the detailed 
analysis  of  the problem described by Giacovazzo & 
Siliqi (1996b) for the quartet case. We observe here that 
the information on the heavy-atom structure is not a 
necessary requisite for determining protein phases via 
triplet invariants (see Giacovazzo,  Siliqi,  Gonzalez 
Platas, Hecht ,  Zanotti  & York,  1996). However ,  once 
protein phases are available,  the difference Fourier  
synthesis with coefficients ( [ F d [ -  [Fp[)exp(i~p) 
s t ra ightforwardly reveals the heavy-atom positions: 
then, the set {FH} becomes available and may be used 
for improving triplet or quartet estimates.  Conse- 

quently,  protein phases can be improved too. It is 
therefore of  non-negl igible  interest to check how the 
information on the heavy-atom structure modifies the 
probabil ist ic formula (16). The results obtained for the 
quartet invariants suggest that (16) has to be replaced by 

el0 ~ P(¢~l~l, ~2, ~3 . . . . .  SilO , RHI, RH2 . . . .  RHI0) 

= [2~rlo(An)] -l  exp{A n cos 4~}, (19) 

where 

3/2 t r A t IMI/2~ AH -- 2[0"3/0"2 ]pRIRER3 -1- 2(AIAE~3 / , ,H  / 

x {1 + )--~[CORRk]H) ' k  (20) 

where [CORRk] H is obtained from C O R R  k by replac- 
ing (L') by eui = [EH[ 2 -  1 [that is, the expected 
value df  ( [EH[ ' -  1) by its known (on the basis of  the 
heavy-atom model  structure) value].  The efficiency of  
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Table 9. APP: statistical calculations for  triplet invariants (found among the 400 reflexions with the largest I A I) 
relative to formulas (4) and (19) 

Calculated error-free data for native and derivative structures are used. See Table 3 for additional details on the symbols. 

ARG 

0.2 
1.2 
2.6 
4.4 

(4) (19) (19) 
Positive estimated triplets Positive estimated triplets Negative estimated triplets 

NR % (l~l) (°) NR % ([q~l) (°) NR % (l~l) (o) 

7092 91 42 6817 91 42 10 0 29 
6896 91 42 5408 91 43 0 - - 

882 99 28 2012 95 36 0 - - 

0 - - 80 100 21 0 - - 

ARG 

0.2 
1.2 
2.6 
4.4 

(4) (19) (19) 
Negative estima~d triplets Positive estimated triplets Negative estimated triplets 

NR % ([~l) (o) NR % (l~l) (o) NR % (l~l) (o) 

5333 91 137 7 0 143 5159 91 137 
4529 92 139 0 - - 3758 91 138 

278 100 161 0 - - 816 98 147 
0 - - 0 - - 6 100 152 

Table 10. APP: statistical calculations for  triplet invariants (found among the 400 reflexions with the largest 1,6 l) 
relative to formulas (4) and (19) 

Observed data for native and derivative structures are used. See Table 3 for additional details on the symbols. 

ARG 

0.2 
1.2 
2.6 
4.4 

ARG 

0.2 
1.2 
2.6 
4.4 

(4) (19) (19) 
Positive estima~d triplets Positive estimated triplets Negative estimated triplets 

NR % (1~1) (o) NR % (1~1) (o) NR % (l~l) (o) 

5703 82 53 5160 84 51 338 47 86 
5567 83 52 4370 84 51 126 83 128 
3878 86 48 3132 84 51 56 91 141 
1697 90 40 1860 87 48 16 94 145 

(4) (19) (19) 
Negative estimated triplets Positive estimated triplets Negative estimated triplets 

NR % (l~l) (o) NR % (1~1) (o) NR % (l~l) (o) 

4654 75 119 278 61 73 4179 78 122 
4348 77 121 116 89 40 3412 77 121 
2662 82 126 31 100 30 2318 79 126 
1004 89 134 8 100 26 1260 85 129 

the new formula may be deduced from Tables 5 and 6. 
The results are now satisfactory also for BPO. 

6. Tests on experimental data 

We focus our attention on distribution (19) since it 
seems to have the potentiality of substantially improving 
triplet estimates obtained via (4) even when 
experimental data are used, that is in the presence of 
imperfect isomorphism and of experimental errors in 
measurements. The results of our tests on the 
experimental data of E2 and BPO are shown in Tables 
7 and 8. Distribution (19) proves to be an efficient tool 
for recognizing triplets wrongly estimated by (4). 

7. A special case 

The distribution (19) unexpectedly failed when our 
calculations were applied to APP: we show in Table 9 
our statistical tests on calculated data (experimental data 

behave similarly). A negligible number of triplets 
estimated positive by (4) are estimated negative by 
(19) and vice versa: their reliability parameter is very 
small, i.e. (IAnl is close to 0.1) and they are 
substantially wrongly estimated. The reason is not 
perfectly understood: probably, it concerns the centro- 
symmetrical nature of the heavy-atom structure and the 
quite small value of N n (when N n = 2, the Wilson 
distribution is strongly violated). In order to check if 
our guess stands, we simulated a different isomorphous 
derivative of APP, where the beavy-atom structure is 
constituted by two symmetry-independent Hg atoms, 
one more than the real Hg derivative. The statistical 
results on the triplet reliability are shown in Table 10: 
they are quite satisfactory, proving the general 
efficiency of our probabilistic approach. Similar tests 
were made for CARP, where the same situation 
occurring for APP may be found. The results, not 
shown for brevity, fit quite well those obtained for 
APP. 
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8. The use of the heavy-atom structure information 

We provided two types of P10 formula, the first [(16)] 
working in the absence of any prior information on the 
heavy-atom structure, the second [(19)] using the 
heavy-atom structure as prior. A technique for improv- 
ing triplet estimates by introducing such a prior was 
suggested by Fortier, Moore & Fraser (1985) and, in 
another context, by Klop, Krabbendam & Kroon 
(1987). The Fortier et al. method may be summarized 
as: once the heavy atoms have been located, the cosine 
moduli of the doublet invariants 6i --- 1/)'i - -~) i ,  
i --- 1,2, 3, can be estimated via the Carnot relation 

cos3 -- (lEd] 2 --IFpl 2 -]FnlZ)/2lFdFp). (21) 

Accordingly, the distribution 

P(4~l, q~2, 4~3, 31, 32, 331{R'i, S~, i = 1,2, 3}) (22) 

can be derived by a simple change of variable from the 
distribution 

P(cPl, 4~2, q~3, 1//1, lP2, @31{R~, S~, i = 1, 2, 3}). 

We have 

P(¢~I, ¢~2, ~3, 61, ¢~2,331{R~, S[, i = 1, 2, 3}) 

L R' .t /,,=3/2] i~t /~t/;7/ ( 1 / ) e x p  2 ~S z cos3 i+2 [c r  3 -- / ' 2  Jp"l"2" '3  COSt~b 

3/2 t p / p / i 
+ 2[0"3/0" 2 ]H[-RIRER 3 cos  qO+SIRER 3 cos(qb+31)  

o' c' o' cos(~+32)+R'IR'2S' 3 COS(qb_Jl_33 ) -- ,,1 ~2,,3 

"at- "'1'-'2'-'3/~p C' C/ COS(¢~..~32 +33)_S,IR'2S ~ cos(¢,+61 +63) 

- S'~S~R'3 cos(C,+31 +33) 

+ S'~S'2S'3 cos(~+3~ +32 +33)]}. (23) 

In the Fortier et al. method, the signs of the 6i's were 
supposed unknown: then, from (4), the conditional 
distribution 

P(C~I{RI, S~, [3il, i = 1, 2, 3}) (24) 

may be obtained as a weighted sum of the eight 
distributions corresponding to the eight sign combina- 
tions of the doublet invariants 31, 3z and 33. From the 
eight sign combinations, four cosine-invariant estimates 
can be obtained: the final cosine invariant is then 
obtained as their weighted average. Fortier et al. 
recognized: (a) with the cosine invariants in hand, the 
tangent refinement is no longer the best tool available 
for the determination of the individual phases; (b) a 
least-squares analysis of cosine invariants (Karle & 
Hauptman, 1957; Hauptman, 1972) could be better used 
to evaluate the individual phases. 

The above considerations indicate that the Fortier et 
al. formula provides estimates that should be compared 
with the expected cosine, while (19), like any formula 
that has to be used in a tangent-refinement process, 

Table 11. NRP(i) and NRN(i) are the number of  triplets 
evaluated positive or negative by the relation (i), 
respectively; NER(i) is the number of  wrong estimates 

E2 
NRP(4) NRP(19) NRN(19) NRP(21 ) 

[NER(4)] [NER(19)] [NER(19)l [NER(2 l)l 
1427 1172 255 1427 
(212) (18) (61) (212) 

NRN(4) NRN(19) NRP(19) NRN(21 ) 
[NER(4)I [NER(19)] [NER(19)] [NER(21)] 

1457 1190 266 1457 
(220) (14) (61) (220) 

BPO 
NRP(4) NRP(19) NRN(19) NRP(21) 

[NER(4)I [NER(19)] [NER(19)] [NER(21)] 
324 316 8 324 
(7) (0) (0) (7) 

NRN(4) NRN(19) NRP(19) NRN(21) 
[NER(4)] [NER(19)] [NER(19)] [NER(21)I 

410 399 11 410 
(10) (0) (1) (10) 

generates phase estimates. Owing to such a difference, 
the relative efficiency of the two formulas may be 
evaluated by taking into consideration triplets consti- 
tuted by symmetry-restricted phases. Indeed, the 
estimate 0 or n" for the triplet phase obtained via (19) 
may be directly compared with the sign of the triplet 
cosine obtained via the Fortier et al. formula. 

Our calculations are summarized in Table 11. For 
BPO and E2, we calculated, among the 1600 reflexions 
with highest value of[A[, 734 and 2884 restricted triplet 
phase invariants, respectively. NRP(i) is the number of 
triplets evaluated positive by the relation (i), NER(i) is 
the number of wrong estimates, NRN(i) is the number 
of triplets evaluated negative by relation (i). 

Table 11 clearly suggests that (24) is unable to change 
the triplet sign estimates provided by (4). The reason is 
readily understood: the estimates of cos 6, obtained via 
(21), do not contain enough supplementary information 
With respect to that originally exploited by (4). Such 
supplementary information is provided by the cross 
terms of the quintet invariants constituting the second 
representation of the triplet invariant. A last observation 
deserves to be made: the estimates provided by (19) are 
more biased toward '~n than the estimates via (4) or 
(16). Such behaviour is the natural consequence of the 
prior information (i.e. heavy-atom structure) used in 
(19). The amount of such bias is related to the 
percentage of the cosine triplet invariants that change 
sign when (4) and (16) are replaced by (19). 

9. Conclusions 

This paper shows that what a few years ago seemed a 
formidable task, that is the estimation of the triplet 
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invariants via their second representation formula 
applied to isomorphous data, may be accomplished. 
The approach is rather complicated but conclusive 
formulas are effective and sufficiently robust against 
loss of isomorphism and errors in measurements, so that 
they can be applied to practical cases. The method 
reveals an interesting feature: cross-vector contribution 
is of order N~ 3/2. Since N n is usually a small value, the 
cross terms of the special quintets may substantially 
modify the triplet estimates provided by the first 
representation formula of Giacovazzo, Cascarano & 
Zheng (1988). A undesirable feature of the method is 
the following: the cross-term contribution depends on 
e n - - ( R  2 - 1 ) ,  but this value is not available from 
experimental data. In this case, the mathematical 
approach naturally requires the use of the expected 
value of en, say (L). However, when the heavy-atom 
structure is available, e n may be used, and this 
information improves the efficiency of the formula. 

The formulas derived in this paper exploit both the 
basis and the cross magnitudes in the second representa- 
tion of the triplet invariants. They can contribute, 
together with the results recently obtained for the 
quartet invariants (Giacovazzo & Siliqi, 1996a,b; 
Kyriakidis, Peschar & Schenk, 1996), to enlighten 
three highly relevant problems: (a) the evaluation of the 
information really provided by the cross terms for 
estimation of the structure invariants when isomorphous 
data are available; (b) the nature and the amount of the 
information provided by the prior knowledge of the 
heavy-atom structure; (c) the relation between the entire 
armory of direct methods and the traditional single 
isomorphous replacement (SIR) approach, when the 
heavy-atom structure is or is not available. All such 
themes will be discussed in a future paper. 
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